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Abstract

Cross coupling in dual-mode dielectric resonators
is obtained by introducing asymmetries in the normally
circular cross section of the resonator in the form of flat-
tened regions at an angle of 45 degree to the two orthogo-
nal modes. When the dielectric resonator occupies the full
length of the cavity the coupling is obtained based on the
relationship between the waveguide polarizer and filter
coupling coefficient as described in [1], and a perturbation
theory is applied to obtain the dimensions. The theory has
been checked against results obtained by a three dimen-
sional field theory program. When the dielectric resonator
is shorter than the cavity the simple relationship between
waveguide polarizability and filter coupling coefficient no
longer applics, but good results are still obtained from per-
turbation theory.

1. Introduction

A dual-mode dielectric loaded cavity is shown in
Fig. 1. Cross coupling between the modes is normally ef-
fected by a tuning screw at a 45 degree angle to the or-
thogonal modes. Since most of the field lies within the
dielectric the screws tends to be quite close to the dielec-
tric for sufficient coupling to take place. This may cause
dimensional problems and difficulties with temperature
compensation between the aluminum housing and the ce-
ramic resonators.

An effective solution to these problems was the
realization of the waveguide polarizer by flattening the
opposite sides of the resonator as shown in Fig. 1(b). The
flattening required is very slight, and therefore the change
of the cut off wavelengths for the parallel and perpendicu-
lar fields may be calculated using perturbation theory
similar to [1].

When the dielectric resonator occupies the entire
length of the cavity, the relationship between waveguide
polarization and coupling coefficient given in [1] applies,
except that the constant of proportionality multiplying the
volume displaced by the flats, e.g. 0.225 in [1, Equ. (40)],
is now frequency dependent due to dispersion of the inho-
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mogeneous dielectric waveguide.

In the more usual case where the dielectric is
shorter than the metallic cavity the situation is more com-
plicated than in the full length case [2]. However perturba-
tion theory is still applicable, although no simple relation-
ship exits between dielectric waveguide polarization and
coupling coefficient.

@ (b

Fig. 1 Dielectric-Loaded Resonator with (a) cross

-coupling tuning screw, and (b) cross-cou-
pling incorporating 45° flats.

I1. Perturbation Theory of Dielectric
Materials in Cavities

Instead of perturbation of the cavity boundary,
the dielectric which forms the flats is changed from high
dielectric constant to one for dielectric loaded waveguides
and cavities. The change in resonant frequency by pertur-
bation of the materials in cavity is [3]:
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where Eo, He are the fields, fo is the resonant frequency
of the unperturbed cavity, E, H and f are those after per-
turbation. T is the volume of the cavity.

For the case of dielectric resonator loaded cavity,
only small portion of the diclectric material is removed to
form the flats, the denominator of the right hand side in
(1) can be computed approximately as:
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which is proportional to the total energy of the cavity. Ap
is zero for the dielectric loaded cavity and (1) is simplified
as:
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I11. Full-Length Dielectric-Loaded Cavities

For the case of the full-length dielectric-loaded
cavity, since most of the stored energy lies within the di-
electric and the electric energy is equal to the magnetic
energy, (3) can be rewritten as:

o H T(AeE-Eo* )dt
fo 2.” T(EEO'E0>X<)‘1T

Only the electric fields of the HE,, mode within the
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dielectric are required to compute (3) and they are readily
derived in [2], [4]:

E, =AJ|(§;r) cosb 5)
A : o Jy(E)
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Ay[HED : .
E,= g—Z[ —— +a EJ &) ] sin® 0]
1

where A is an arbitrary constant,y is the propagating con-
stant and Ef =€, k§+72.

In order to compute (5), (6), (7), ¥, o and &
should be solved. The propagating constant y must be
computed numerically by solving a characteristic equa-
tion. o is an analytical function of (a, &;, {,), where

Cg = —(k3+72). The integration of the denominator in (3)
can be rearranged as:
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If the perturbed fields are assumed to be uniform

and equal to the unperturbed fields at r = a (a’ is some-

where between a and a-t), the nominator in (3) can be re-
written as:

H T(AeE-Eo* it
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Denote K, =AU,/U; and Kz=AU,/ U,
the results for the parallel and perpendicular HE 1
modes, as shown in Fig. 2, are:

AR/ £, = KAI sin’d0+ Ky J cos’dd (12)

M f, =K Af cos’dd +KBJ. sin’do (13)

Neglecting the term containing J sin’d0 since
that flat is near 8 = 0, one has:

8/ f, = Kg [ sin2p— cos20] (14)

A,/ f, =Ky [ sin2g— cos20] (15)

where ¢ = cos”'(1-t/a).

IV. Results

Full-Length Dielectric-Loaded Cavities

In order to verify our theory, the results is
checked by a three dimensional field theory program-
Hewlett-Packard HFSS program. The HFSS is applied to

solve the propagating constant of the dielectric-loaded
waveguide (B) with unperturbed and perturbed dielectric.
The shifting of the propagating constant then is transferred
to the shifting of the full-length dielectric cavity resonant
frequency by:
AF dp 1
—=—(——> 16
L B rad/p? 19
where k. is defined by Bz=£,k(2,—kz. k¢ is frequency
dependent but is almost constant when the frequency is far
away from the cutoff frequency. The results of HFSS for a
dielectric constant of 37.3 dielectric-loaded waveguide
and inner diameter of 0.760", outer diameter of 1.206'" are
listed in Table 1. The results derived from - (14), (15) are
shown in Fig. 3, where a” in (10), (11) is chosen as (a- t/2).
They agree well with the HFSS results and perturbation
theory is verified.

2(a-t)

Fig. 2 Cross section of dielectric-Loaded Waveguide

Partial-Length Dielectric-Loaded Cavities
For a partial-filled dielectric loaded cavity, as
shown in Fig. 1, more than one propagating mode may be

Table 1 The results of HFSS for a dielectric loaded waveguide

FE, mode

Freq. ABJB A7/

(GHz) [ = 0.0394 [ t’="10.0789 [ ¥'= 0.1184 | = 0.0394 | = 0.0789 | /= 0.1184
3.75 0.00180 | 0.005910 | 0.01165 0.00139 0.00458 0.00904
3.00 0.00375 0.01179 0.02300 0.00239 0.00753 0.01469
2.50 0.00689 0.00237 0.04758 0.00327 0.01130 0.02260

I mode

Freg. AB/B i af/f

(GHz) [ #'=10.0394 [ '=0.0789 [ '= 0.1184 | #=0.0304 | {'= 0.0789 | {'= 0.1184
3.75 0.00050 0.00182 0.00384 0.00038 0.00140 0.00295
3.00 0.00083 0.00256 0.00531 0.00053 0.00164 0.00340
2.50 0.00016 0.00227 0.00590 0.00008 0.00109 0.00283

=t/u
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excited in the dielectric-loaded waveguide region. Simple
formulation as in the case of the full-length dielectric
loaded cavity is invalid. Mode-matching technique [5], [6]
can be used to solve the unperturbed resonant frequency
and field distribution rigorously.

Fig. 4 shows the results for a partial-length
dielectric-loaded cavity. The shifting of the resonant fre-
quency by flattening the DR is a strong function of the

distance between DR and the end plates (Z,). Since more

than one propagating modes are excited by the disconti-
nuities, the field distribution within the DR depends on the
energy distribution among them.

V. Conclusions

Perturbation theory has been applied to compute
the coupling between dual-modes dielectric-resonators by
means of flats surfaces at 45 © locations relative to the po-
larization of each mode. This method can be used to avoid
metallic tuning and coupling screws which degrade the
unloaded Q’s and reduce the power handling capability.
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Fig. 3 The compared results of perturbation theory
and HFSS.
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Fig. 4 (A b / f)ofa partial-length dielectric-
loaded cavity



